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Abstract

Let G be a connected compact Lie group and T its maximal torus. The composition of maps
H∗(BG) → H∗(BT ) → H∗(G/T ) is zero for positive degree, while it is far from exact. We
change H∗(G/T ) by Chow ring CH∗(X) for X some twisted form of G/T , and change H∗(BG)
by CH∗(BG). Then we see that it becomes near to exact but still not exact, in general. We
also see that the difference for exactness relates to the generalized Rost motive in X.
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1 Introduction

Let p be a prime number. Let G and T be a connected compact Lie group and its maximal torus.
Given a field k with ch(k) = 0, let Gk and Tk be a split reductive group and a split maximal torus
over the field k, corresponding to G and T . Let Bk be the Borel subgroup containing Tk. Let us
write by BGk its classifying space of Gk defined by Totaro [To1].

For a smooth algebraic variety X over k (resp. toplogical space), let CH∗(X) = CH∗(X)(p)

(resp. H∗(X) = H∗(X)(p)) mean p-localized Chow ring over k (resp. p-localized ordinary coho-
mology ring). In general, to compute CH∗(BGk) or H∗(BG) are difficult problems. At first, we
consider them modulo torsion elements. We consider the following diagram

(1.1) CH∗(BGk)/Tor
(1)−−−−→
i∗

CH∗(BBk)W

(2)

ycl ∼=
y

H∗(BG)/Tor
(3)−−−−→
i∗

H∗(BT )W

where Tor is the ideal generated by torsion elements, cl is the cycle map, and W = NG(T )/T is
the Weyl group.

When H∗(G) is torsion free, we know that Tor = 0 and all maps (1), (2), (3) are isomorphic,
and H∗(BT )W is well known. So we assume that H∗(G) have p-torsion, throughout this paper. By
the existence of the Becker-Gottlieb transfer, the maps (1), (3) are injections. Moreover when G is
simply connected, (1) is always not surjective ([Ya3]), while for many cases (3) are surjective. (For
cases that (3) are not surjective are founded by Feshbach [Fe], Benson-Wood [Be-Wo]). In any way,
CH∗(BGk)/Tor is isomorphic to a proper subring of CH∗(BBk)W for each simply connected G.

To study CH∗(BGk)/Tor, we consider twisted flag varieties. Let G be a Gk-torsor. Then

F = G/Bk is a (twisted) form of the flag variety Gk/Bk. The fibering G/T
j→ BT

i→ BG induces
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the maps

(1.2) CH∗(BGk)
i∗→ CH∗(BBk)

j∗→ CH∗(F),

whose composition j∗i∗ = 0 for ∗ > 0. But it is far from exact when G ∼= Gk the split group. Here
exact means Ker(j+) = Ideal(Im(i+)) ⊂ CH+(BBk) (where + means the positive degree parts).
However, we observe that it becomes near exact when G is sufficient twisted, while it is still not
exact for most cases. To see this fact, let us write the difference

(1.3) DCH(G) = Ker(j+(G))/(Ideal(Im(i+)).

Note that this invariant DCH(G) becomes smaller, if F becomes strongly twisted. In particular.
we will see that it is quite small for the versal flag variety CH∗(F).

Here versal is defined as follows. Let us consider an embedding of Gk into the general linear
group GLN for some large N . This makes GLN a Gk-torsor over the quotient variety S = GLN/Gk.
Define the versal Gk-torsor E to be the Gk-torsor over the function field k(S) given by the generic
fiber of GLN → S. (For details, see [Ga-Me-Se], [To2], [Me-Ne-Za], [Ka].) The corresponding
flag variety E/Bk(S) is called the versal flag variety, which is considered as the most complicated
twisted flag variety (for given Gk). It is known that the Chow ring CH∗(E/Bk(S)) is not dependent
to the choice of generic Gk-torsors E (Remark 2.3 in [Ka]).

In this paper, a versal Gk-torsor G means this Gk(S)-torsor E, and Chow ring CH∗(G/Bk)
means this CH∗(E/Bk(S)), which is defined over k(S) but not k. Exchanging k to k(S) in (1,2), we
also define DCH(G) (note CH∗(BBk) ∼= CH∗(BBk(S))). Moreover, when G is of type (I) (see §2
below), it is known CH∗(G/Bk) ∼= CH∗(G′/Bk) for the versal G (over k(S)) and each non-trivial
Gk-torsor G′.

By Petrov-Semenov-Zainoulline ([Pe-Se-Za], [Se-Zh]), it is known that the p-localized motive
M(F)(p) of F is decomposed as

(1.4) M(F)(p) = M(G/Bk)(p)
∼= R(G)⊗ (⊕iT⊗si)

where T is the Tate motive and R(G) is some motive called generalized Rost motive. (It is the
original Rost motive ([Ro], [Vo1,2], [Pe-Se-Za], [Ya4]) when G is of type (I)). Hence we have maps

(1.5) CH∗(BBk)
j∗→ CH∗(F)

pr.→ CH∗(R(G)).

From Merkurjev and Karpenko [Me-Ne-Za], [Kar], we know that the first map j∗ is also surjective
when G is a versal Gk-torsor.

For ease of computations, we mainly consider the mod(p) theories for (1.2)

(1.6) CH∗(BGk)/p
i∗p→ CH∗(BBk)/p

j∗p→ CH∗(F)/p.

Let us define D(G) = Ker(j+
p )/(Ideal(Im(i+p )). Then we see

Lemma 1.1. Let G be versal. Then we have the surjection

pr : D(Gk)/D(G)→ CH+(R(G))/p.

We will see that D(G) are quite small in some cases. For example we have
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Theorem 1.1. Let (G, p) = (SO(2` + 1), 2) and G be versal. Then D(G) ∼= 0, that is the above
sequence (1.6) is exact.

Theorem 1.2. Let (G(N), p) = (Spin(N), 2) and G(N) be versal. Then we have lim∞←ND(G(N)) =
0.

Recall that CH∗(BBk) ∼= S(t) = Z(p)[t1, ...t`] with |ti| = 2. Let us write ci the i-th elementary
symmetric function in S(t) and let e = c41. The notation Λ(a, ..., b) means the Z/2-exterior algebra
generated by a, ..., b

Proposition 1.3. Let (G, p) = (Spin(7), 2) and G be versal. Then we have additively

D(G) ∼= Λ(c2c3, e4)+ ⊗ S(t, c) for S(t, c) = S(t)/(c2, c3, e4).

The plan of this paper is the following. In §2, we recall the Chow ring CH∗(F) for a nontrivial
Gk-torsor G. In §3 we note some elementary relations between CH∗(F) and CH∗(BGk). In §4 we
note some facts for CH∗(BBk)W /Tor. In §5, §6, we try to compute D(G) for G = PU(p), SO(n).
In §7, §8, we try to study D(G) for G = Spin(n) for general n. In §9, §10, we study Spin(7), Spin(9).
In §11, §12 we study the case (G, p) = (F4, 3). In §13, we study the case G = E6, E7 and p = 3.

The author thanks Akihiko Hida and Masaki Kameko for suggestions for this paper. In particular
Masaki Kameko found errors in the first version of this paper.

2 CH∗(G/Bk)

We recall arguments for H∗(G/T ) in the algebraic topology. By Borel, the mod(p) cohomology of
the Lie group G is (for p odd)

H∗(G;Z/p) ∼= P (y)/p⊗ Λ(x1, ..., x`), |xi| = odd

where P (y) is a truncated polynomial ring over Z(p) generated by even dimensional elements yi,
and Λ(x1, ..., x`) is the Z/p-exterior algebra generated by x1, ..., x`. When p = 2, we consider the
graded ring grH∗(G;Z/2) which is isomorphic to the right hand side ring above.

When G is simply connected and P (y) is generated by just one generator, we say that G is of
type (I). Except for (E7, p = 2) and (E8, p = 2, 3), all exceptional (simple) Lie groups are of type
(I). The spin groups G = Spin(n) are of type (I) for 7 ≤ n ≤ 10. Note that in these cases, it is
known rank(G) = ` ≥ 2p− 2.

We consider the fibering ([Tod2], [Mi-Ni]) G
π→ G/T

i→ BT and the induced spectral sequence

(2.1) E∗,∗2 = H∗(BT ;H∗(G;Z/p)) =⇒ H∗(G/T ;Z/p).

Here we can write H∗(BT ) ∼= S(t) = Z[t1, ..., t`] with |ti| = 2.
It is well known that yi ∈ P (y) are permanent cycles and that there is a regular sequence

(b̄1, ..., b̄`) in H∗(BT )/(p) such that d|xi|+1(xi) = b̄i ([Tod2], [Mi-Ni]).
We know that G/T is a manifold such that H∗(G/T ) is torsion free and is generated by even

degree elements. We also see that there is a filtration in H∗(G/T )(p) such that

grH∗(G/T )(p)
∼= P (y)⊗ S(t)/(b1, ..., b`)

where bi ∈ S(t) with bi = b̄i mod(p).
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Recall BP ∗(−) is the Brown-Peterson theory with the coefficient BP ∗ = Z(p)[v1, ...], |vi| =
−2(pi − 1). Then we have

grBP ∗(G/T ) ∼= BP ∗ ⊗ grH∗(G/T ).

Let Qi : H∗(X;Z/p) → H∗+2pn−1(X;Z/p) be the Milnor operation. There is a relation between
Qi-action on H∗(X;Z/p) and vi-action on BP ∗(X).

Lemma 2.1. Let d(x) = b 6= 0 ∈ H∗(BT ;Z/p) in the above spectral sequence (2.1). Then we can
take a lift b ∈ BP ∗(BT ) such that

b =
∑
i=0

viy(i) ∈ BP ∗(G/T )/I2
∞ with I∞ = (p, v1, ...)

where y(i) ∈ H∗(G/T ;Z/p) with π∗y(i) = Qix.

For the algebraic closure k̄ of k, let us write X̄ = X|k̄. Then considering (2.1) over k̄, we see

(2.2) CH∗(R̄(G))/p ⊂ P (y)/p, CH∗(⊕iT⊗si) ∼= S(t)/(b1, ..., b`).

Moreover when G is versal, we can see ([Ya4]) that CH∗(R(G)) is additively generated by
products of b1, ..., b` in (2.2) i.e., CH∗(R̄(G)/p ∼= P (y). Hence we have surjections CH∗(BBk) →
CH∗(F)

pr.→ CH∗(R(G)).
For ease of notations, let us write

A(b) = Z/p[b1, ..., b`], (b) = Ideal(b1, ..., b`) ⊂ S(t)/p.

By giving the filtration on S(t) by bi, we can write (additively)

grS(t)/p ∼= A(b)⊗ S(t)/(b).

Namely, x ∈ S(t)/p is written as

x =
∑
I

b(I)t(I) for b(I) ∈ A(b), and 0 6= t(I) ∈ S(t)/(b).

In particular, we have maps A(b)
iA→ CH∗(F)/p→ CH∗(R(G))/p. We also see that this compo-

sition map is surjective.

Lemma 2.2. ([Ya4]) Suppose that there are f1(b), ..., fs(b) ∈ A(b) such that

CH∗(R(G))/p ∼= A(b)/(f1(b), ..., fs(b)).

Moreover if fi(b) = 0 for 1 ≤ i ≤ s also in CH∗(F)/p, we have the isomorphism

CH∗(F)/p ∼= S(t)/(p, f1(b), ..., fs(b)).

For a ring B, let B{a, ..., b} mean the B-free module generated by a, ..., b.

Lemma 2.3. Let pr : CH∗(F)/p → CH∗(R(G))/p, and 0 6= b ∈ Ker(pr). Then b =
∑
b′u′ with

b′ ∈ A(b), u′ ∈ S(t)+/(p, b1, ..., b`) i.e., |u′| > 0.
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Using these, we can prove

Theorem 2.1. ([Ya4]) Let G be of type (I) and rank(G) = `. Let G be a non-trivial Gk-torsor.
Then 2p − 2 ≤ `, and we can take bi ∈ S(t) = CH∗(BBk) for 1 ≤ i ≤ ` such that there are
isomorphisms

CH∗(R(G))/p ∼= Z/p{1, b1, ..., b2p−2},

CH∗(G/Bk)/p ∼= S(t)/(p, bibj , bk|1 ≤ i, j ≤ 2p− 2 < k ≤ `).

We note that the above theorem also holds when G is versal.

3 Relation between G/Bk and BG

In this section, we consider CH∗(X)/I for some ideal I (e.g., CH∗(X)/p). Let us write it simply
h∗(X) and I = I(h).

We note here the following lemma for each Gk-torsor G (not assumed twisted).

Lemma 3.1. For the above h∗(X), the composition of the following maps is zero for ∗ > 0

h∗(BGk)→ h∗(BBk)→ h∗(G/Bk).

Proof. Take U (e.g., GLN for a large N) such that U/Gk approximates the classifying space BGk
[To3]. Namely, we can take G = f∗U for the classifying map f : G/Gk → U/Gk. Hence we have
the following commutative diagram

F = G/Bk −−−−→ U/Bky y
Spec(k) ∼= G/Gk −−−−→ U/Gk

where U/Bk (resp. U/Gk) approximatesBBk (resp. BGk). Since h∗(Spec(k)) = CH∗(Spec(k))/I(h) =
0 for ∗ > 0, we have the lemma. q.e.d.

The above sequences of maps in the lemma is not exact, in general. However we get some
informations from h∗(F) to h∗(BGk). In particular, we get much informations of h∗(BGk) from
h∗(F) than that from h∗(Gk/Bk) when F is twisted.

Let us write the induced maps

h+(BGk)
i+→ h+(BBk)

j(G)+→ h+(G/Bk)

where h+(−) is the ideal of the positive degree parts. Let us define

Dh(G) = Ker(j+)/(Ideal(Im(i+)).

Let G be versal and k′ is some extension of k. Then

Dh(G) ⊂ Dh(G|k′) ⊂ Dh(G|k̄) ∼= Dh(Gk).

For ease of arguments we mainly consider the case h∗(X) = CH∗(G)/p, and write this Dh(G)
simply by D(G).
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Recall grS(t)/p ∼= A(b)⊗ S(t)/(b). For f1, ..., fs ∈ A(b), let us write by

A(b)(f1, ..., fs) (resp. S(t)(f1, ..., fs))

the ideal in A(b) (resp. S(t)/p) generated by f1, ..., fs. Then it is almost immediately

Lemma 3.2. We can write additively

S(t)(f1, ..., fs) ∼= A(b)(f1, ..., fs)⊗ S(t)/(b).

Proof. Each element x ∈ S(t)(f1, ..., fs) can be written as

x =
∑
J

(
∑
i

b(J)ifi)t(J), for b(J)i ∈ A(b), 0 6= t(J) ∈ S(t)/(b).

q.e.d.

Lemma 3.3. Let G be versal. Then there are maps

D(Gk)/D(G) ⊂ CH∗(F)/p
pr→ CH∗(R(G))/p,

such that pr(D(Gk)/D(G)) = CH+(R(G))/p.

Proof. We consider the map S(t)/p ∼= CH∗(BBk)/p
j∗(G)→ CH∗(G/Bk)/p. By the definition, we

have
D(Gk)/(D(G)) ∼= (Ker(j∗(Gk)/Im(i+))/(Ker(j∗(G))/Im(i+))

∼= Ker(j∗(Gk))/Ker(j∗(G)) ⊂ S(t)/(Kerj∗(G)) ∼= CH∗(F)/p.

Recall that CH∗(Gk/Bk)/p ∼= P (y)⊗ S(t)/(b). So Ker(j(Gk)) = (b). From lemma 3.2,

(b) = S(t)(b1, ..., b`) ∼= (A(b)(b1, ..., b`)⊗ S(t)/(b) ∼= A(b)+ ⊗ S(t)/(b).

Since prS(t)/(b) = Z/p{1} and from Lemma 2.3, we have the lemma. q.e.d.

Corollary 3.1. Let G be versal. Suppose there are f1(b), ..., fs(b) in A(b) such that

CH∗(F)/p ∼= S(t)/(p, f1(b), ..., fs(b)).

Then D(Gk)/D(G) ∼= CH+(R(G))/p⊗ S(t)/(b).

Proof. The ideal Ker(j+(G)) is shown from

Kerj∗(G) ∼= S(t)(f1(b), ..., fs(b)) ∼= (A(b)(f1(b), ..., fs(b))⊗ S(t)/(b).

Hence we have D(Gk)/D(G) ∼= A(b)+/(f1(b), ..., fs(b))⊗ S(t)/(b). q.e.d.

Corollary 3.2. Let G be versal, and assume the supposition in Lemma 2.2. Moreover assume
Im(i∗) ⊂ A(b). Then there is D̃(G) ⊂ D(G) such that

D(G) ∼= D̃(G)⊗ S(t)/(b).
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From above corollaries, we have a very weak version of the decomposition theorem by Petrov-
Semenov-Zainoulline [Pe-Se-Za], without using deep theories of motives.

Corollary 3.3. Let G be versal, and assume the supposition in Lemma 2.2. Then we have an
additive decomposition of the mod(p) Chow ring

CH∗(G/Bk)/p ∼= S(t)/(b)⊕D(Gk)/D(G)

∼= (Z/p{1} ⊕ CH+(R(G))/p)⊗ S(t)/(b) ∼= CH∗(R(G))⊗ S(t)/(b).

Example. Let G be of type (I). Then

Kerj+(Gk) ∼= Ideal(b1, ..., b`) ⊂ S(t)/p = CH∗(BBk)/p,

Kerj+(G) ∼= Ideal(bibj , bk|1 ≤ i, j ≤ 2p− 2 < k ≤ `) ⊂ S(t)/p.

Hence D(Gk)/D(G) ∼= Z/p{b1, ..., b2p−2} ⊗ S(t)/(b).

4 CH∗(BG)/Tor

By Totaro, we have the Becker-Gottlieb transfer also in CH∗(X). Hence we get the injection

(4.1) CH∗(BGk)/Tor ⊂ CH∗(BT )W

for the Weyl group W = NG(T )/T . From [Ya3], the above injection is always not surjective when
H∗(G) has p-torsion. In general, to get CH∗(BGk) is a difficult problem, but CH∗(BGk)/Tor
seems more accessible.

Recall that gr∗geo(X) (resp. gr∗top(X)) is the graded ring associated with the geometric (resp.
topological) filtration of the algebraic K-theory K0

alg(X) (resp. the topological K-theory K0
top(X)).

Namely, it is isomorphic to the infinite term E2∗,∗,0
∞ (resp. E2∗,0

∞ ) of the motivic (resp. usual)
Atiyah-Hirzebruch spectral sequence.

Lemma 4.1. There is an isomorphism

CH∗(BGk)/Tor ∼= gr∗geo(BGk)/Tor.

Moreover if CH∗(BGk)→ gr∗top(BG)/Tor (resp. (BP ∗(BG)⊗BP∗ Z(p))/Tor) is surjective, then

CH∗(BGk)/Tor ∼= gr∗top(BG)/Tor (resp. (BP ∗(BG)⊗BP∗ Z(p))/Tor).

Proof. We consider the commutative diagram

CH∗(BGk)/Tor
(1)−−−−→ CH∗(BBk)

(2)

y ∼=
y

gr∗geo(BGk)/Tor
(3)−−−−→ gr∗geo(BBk)

There is the Becker-Gottlieb transfer, the map (1) is injective. Moreover the map (2) is surjective,
and we have the first isomorphism. The second isomorphism follows from exchanging gr∗geo(−) by
gr∗top(−) (or by BP ∗(−)⊗BP∗ Z(p)). q.e.d.
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On the other hand Totaro defines the modified cycle map c̄l such that the composition ρ · c̄l

(4.2) CH∗(X)
c̄l→ BP ∗(X)⊗BP∗ Z(p)

ρ→ H∗(X;Z(p))

is the usual clycle map cl. Moreover Totaro conjectures that c̄l is isomorphic when X = BG
and k = k̄. More weakly, if the modified cycle map c̄l mod(Tor) is surjective, then we have
CH∗(BGk)/Tor ∼= (BP ∗(BG)⊗BP∗ Z(p))/Tor.

By arguments similar to the proof of Lemma 4.1, (using CH∗(BB̄k) ∼= CH∗(BBk)) we have

Lemma 4.2. If res : CH∗(BGk)/Tor → CH∗(BḠk)/Tor is surjective, then it is isomorphic.

Corollary 4.1. Let G be simply connected. If CH∗(BḠk)/Tor is generated by Chern classes,
then res : CH∗(BGk)/Tor ∼= CH∗(BḠk)/Tor.

Proof. When G is simply conned, by Chevalley, we know res : K0(BGk) ∼= K0(BḠk). Hence a
map BḠk → BU(N) can be lift to a map BGk → BU(N). This implies that any Chern class in
CH∗(BḠk) can be lift to an element in CH∗(BGk). q.e.d.

5 PGL(3) for p = 3

Now we consider in the case (G, p) = (PU(p), p), which has p-torsion in cohomology, but it is not
simply connected. Its mod p cohomology is

H∗(G;Z/p) ∼= Z/p[y]/(yp)⊗ Λ(x1, ..., xp−1) |y| = 2, |xi| = 2i− 1.

So P (y)/p ∼= Z/p[y]/(yp) with |y| = 2.
Since G is not simply connected, G is not of type (I) while P (y) is generated by only one y.

(Indeed, CH∗(X)/p resembles that of type (I). Compare Theorem 2.4 and Theorem 5.2 below.)
By using the map U(p − 1) → PU(p), we know d2i(xi) = ci for the elementary symmetric

function in H∗(BTU(p)). Then we have

grH∗(G/T ;Z/p) ∼= Z/p[y]/(yp)⊗ S(t)/(c1, ..., cp−1).

Lemma 5.1. We have pyi = ci ∈ H∗(G/T )(p).

Theorem 5.1. Let G = PU(p) and F = Gk/Bk. Then there are isomorphisms

CH∗(R(Gk))/p ∼= CH∗(R1)/p ∼= Z/p{1, c1, ..., cp−1},

CH∗(F)/p ∼= S(t)/(p, cicj |1 ≤ i, j ≤ p− 1).

By Vistoli [Vi], it is known that CH∗(BG)/Tor ∼= CH∗(BBk)W . However its ring structure is
not mentioned except for p = 3, 5. (As additive groups it isomorphic to Z(p)[c2, ..., cp], but they are
not isomorphic as rings.)

We compute here D(G) only for PU(3)

(∗) CH∗(F)/3 ∼= S(t)/(3, c21, c1c2, c
2
2).
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By Vistoli and Vezzosi ( Theorem 14.2 in [Vi]), we have

CH∗(BGk)/Tor ∼= Z(3)[c
′
2, c
′
3, c
′
6]/(27c′6 − 4(c′2)3 − (c′3)2).

Each element c′i is written using ci in (S(t) = CH∗(BBk) (see page 48 in [Vi]) as

c′2 = 3c2 − c21, c′3 = 27c3 − 9c1c2 + 2c31, c′6 = 4c32 + 27c23 mod(c1).

Hence the map i∗ mod(3) is given as

(∗∗) c′2 7→ −c21, c′3 7→ −c31, c′6 7→ c32 mod(c1).

Proposition 5.2. Let (G, p) = PU(3), 3) and G be versal. Then

D(G) ∼= Z/3{c1c2, c22, c1c22} ⊗ S(t)/(c1, c2).

Proof. The result follows form (∗).(∗∗) and the quotient

(c21, c1c2, c
2
2)/(c21, c

3
1, c

3
2)

of ideals in CH∗(Bk)/3 ∼= S(t)/3. q.e.d.

6 SO(2`+ 1)

We consider the orthogonal groups G = SO(m) and p = 2. The mod(2)-cohomology is written as
( see for example [Tod-Wa], [Ni])

grH∗(SO(m);Z/2) ∼= Λ(x1, x2, ..., xm−1)

where |xi| = i, and the multiplications are given by x2
s = x2s.

For ease of argument, we only consider the case m = 2`+ 1 so that

H∗(G;Z/2) ∼= P (y)⊗ Λ(x1, x3, ..., x2`−1)

grP (y)/2 ∼= Λ(y2, ..., y2`), letting y2i = x2i (hence y4i = y2
2i).

The Steenrod operation is given as Sqk(xi) =
(
i
k

)
(xi+k). The Qi-operations are given by Nishimoto

[Ni]
Qnx2i−1 = y2i+2n+1−2, Qny2i = 0.

In particular, Q0(x2i−1) = y2i in H∗(G;Z/2). It is well known that the transgression bi =
d2i(x2i−1) = ci is the i-th elementary symmetric function on S(t). (this element ci is also rep-
resented by the i-th Chern class.) Hence we have

Lemma 6.1. We have an isomorphism

grH∗(G/T ) ∼= P (y)⊗ S(t)/(c1, ..., c`).
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Moreover, the cohomology H∗(G/T ) is computed completely by Toda-Watanabe [Tod-Wa] (e.g.
2y2i = ci mod(4)). In BP ∗(G/T )/I2

∞, we have a relation from Lemma 2.1 and the result by
Nishimoto

(6.1) ci = 2y2i + v1y2i+2 + ...+ vjy2i+2(2j−1) + ...

Let T be a maximal torus of SO(m) and W = WSO(m)(T ) its Weyl group. Then W ∼= S±` is

generated by permutations and change of signs so that |S±k | = 2kk!. Hence we have

H∗(BT )W ∼= Z(2)[p1, ..., p`] ⊂ H∗(BT ) ∼= Z(2)[t1, ..., t`], |ti| = 2

where the Pontriyagin class pi is defined by Πi(1 + t2i ) =
∑
i pi.

Here we recall for the Stiefel-Whitney classes wi,

H∗(BG;Z/2) ∼= Z/2[w2, w3, ..., w2`+1], Q0(w2i) = w2i+1 mod(wswt).

It is known H∗(BG) has no higher 2-torsion and

H(H∗(BG;Z/2);Q0) ∼= (H∗(BG)/Tor)⊗ Z/2

where H(A;Q0) is the homology of A with the differential Q0. This homology is isomorphic to
Z/2[w2

2, ..., w
2
2`]. Hence we have

H∗(BG)/Tor ∼= D where D = Z(2)[c2, c4, ..., c2`],

for the Chern classes ci. The isomorphism j∗ : H∗(BG)/Tor → H∗(BT )W is given by c2i 7→ pi.
Now we consider the mod(2) Chow ring when G is the split group Gk.

Lemma 6.2. We have the additive isomorphism

D(Gk) ∼= Λ(c1, .., c`)
+ ⊗ S(t, c) with S(t, c) ∼= S(t)/(c1, ..., c`).

Proof. Recall that

CH∗(Gk/Bk)/2 ∼= H∗(G/T )/2 ∼= P (y)/2⊗ S(t)/(c1, ..., c`).

Hence we see
Ker(j) ∼= (c1, ..., c`) ⊂ CH∗(BBk)/2 ∼= H∗(BT )/2.

Here j : pi 7→ c2i mod(2) by definition of the Pontryagin class pi.
On the other hand, we know by Totaro [To1]

CH∗(BḠk) ∼= BP ∗(BG)⊗BP∗ Z(2)
∼= Z(2)[c2, ..., c2`+1]/(2codd).

In fact, CH∗(BḠk)/Tor ∼= CH∗(BGk)/Tor from Lemma 4.3. Hence

CH∗(BGk)/Tor ∼= D ∼= H∗(BT )W

by i : c2i 7→ pi. Thus the ideal generated by the image is (Im(i)) ∼= (c2, c4, ..., c2`) ⊂ S(t). Since
j : pi 7→ c2i , we have

Ker(j)/(Im(i)) ∼= (c1, ..., c`)/(c
2
1, ..., c

2
`) ⊂ S(t)/(c21, ..., c

2
`).

It is additively isomorphic to Λ(c1, ..., c`)
+ ⊗ S(t)/(c1, ..., c`), namely, each element x ∈ D(Gk) is

written as x =
∑
I c(I)t(I) with c(I) ∈ Λ(c1, ..., c`)

+ and t(I) 6= 0 ∈ S(t)/(2, c1, ..., c`). q.e.d.
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Recall that there is a surjection D(Gk)→ CH+(R(G))/p from Lemma 3.3. We can see c1...c` 6=
0 in CH∗(R(G))/2 (for example, using the torsion index t(G) = 2` [To2]).

Theorem 6.1. (Petrov [Pe], [Ya4]) Let (G, p) = (SO(2` + 1), 2) and F = G/Bk be versal. Then
CH∗(F) is torsion free, and

CH∗(F)/2 ∼= S(t)/(2, c21, ..., c
2
`), CH∗(R(G))/2 ∼= Λ(c1, ..., c`).

Corollary 6.2. Let (G, p) = (SO(2`+ 1), 2) and G be versal. Then D(G) ∼= 0.

Proof. We have Ker(j+) ∼= (c21, ..., c
2
`)
∼= Ideal(Im(i+)) for j∗ : CH∗(BBk)/2 → CH∗(F)/2.

q.e.d.

7 BSpin(n) for p = 2

In this section, we study Chow rings for the cases G = Spin(n), p = 2. Recall that the mod(2)
cohomology is given by Quillen [Qu]

H∗(BSpin(n);Z/2) ∼= Z/2[w2, ..., wn]/J ⊗ Z/2[e]

where e = w2h(∆) and J = (w2, Q0w2, ..., Qh−2w2). Here wi is the Stiefel-Whitney class for the
natural covering Spin(n) → SO(n). The number 2h is the Radon-Hurwitz number, dimension of
the spin representation ∆ (which is the representation ∆|C 6= 0 for the center C ∼= Z/2 ⊂ Spin(n)).
The element e is the Stiefel-Whitney class w2h of the spin representation ∆.

Hereafter this section we always assume G = Spin(n) and p = 2. For the projection π :
Spin(n) → SO(n), the maximal torus T of Spin(n) is given π−1(T ′) for the maximal torus T ′ of
SO(n), and W = WSpin(n)(T ) ∼= WSO(n)(T

′). Benson-Wood [Be-Wo] determined H∗(BT )W and
proved

Theorem 7.1. (Benson-Wood Corollary 8.4 in [Be-Wo]) Let G = Spin(n) and p = 2. Then
i∗H : H∗(BG) → H∗(BT )W is surjective if and only if n ≤ 10 or n 6= 3, 4, 5 mod(8) (i.e., it is not
the quaternion case).

Moreover, in this section, we assume Spin(n) is in the real case [Qu], that is n = 8`− 1, 8`+ 1
(hence i∗H is surjective and h = 4`− 1, 4` respectively).

Benson and Wood define invariants qi, η`−1 such that

(1) q1 = 1/2p1, q2
i = 2qi+1 with |qi| = 2i+1,

(2) η2
`−1 = i∗(c2h(∆C)) = i∗(e2), |η`−1| = 2h.

In fact in H∗(BT )W , it is defined as η`−1 = ΠI⊂{2,...,`}(q1 − (Σi∈Ixi)).
Then Benson-Wood prove

Theorem 7.2. ( Theorem 7.1 in [Be-Wo]) If n = 2`+ 1 ≥ 7, then

H∗(BT )W ∼= Z(2)[p2, ..., p`, η`−1]⊗ ΛZ(q1, ..., q`−2)

where ΛZ(a1, ..., ak) is the free module generated by aε11 ...a
εk
k for εi = 0, 1.
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On the other hand, by Kono [Ko], H∗(BG;Z) has no higher 2-torsion,

H(H∗(BG;Z/2);Q0) ∼= (H∗(BG)/Tor)⊗ Z/2.

Benson and Wood also define si ∈ H∗(BSO(n);Z/2) such that

Q0(si) = Qi(w2) mod(s1, ..., si−1)

and hence si ∈ H(H∗(BG;Z/2);Q0). So we can identify si ∈ H∗(BG)/Tor.

Corollary 7.3. ([Be-Wo]) The cohomology H∗(BG)/Tor is isomorphic

D` ⊗ ΛZ(s3, ..., s`, e) with D` = Z(2)[c4, c6, ..., c2`, c2h ]

where ci = w2
i are lifts in H∗(BG;Z)/Tor of the same named elements in H∗(BG;Z/2).

The map i∗ is given with modulo (decomposed elements)

c2i 7→ pi, e 7→ η`−1, si 7→ qi−2.

For actions of Qi on H∗(BG;Z/2), we use the following lemma, which I learned from Koichi
Inoue.

Lemma 7.1. Let us write (W ) = Z/2[w2, ..., wn]+. In H∗(BSO(N);Z/2). we have

(1) Qi(wj) =

{
wj+2i−1 mod(W 2) if j = even

0 mod(W 2) j = odd.

(2) when N < 2i+1 − 1 + j, Qi(wj) = wjw2i+1−1 mod(W 3).

Lemma 7.2. Let 2i < 2`+ 1. Then we can take si−1 = w2i mod(W 2). The element si−1 is not in
the image of the cycle map from the Chow ring.

Proof. By Inoue’s lemma,

Q0(si) = Qi(w2) = w2i+1+1 mod(W 2).

Hence si = w2i+1 mod(W 2).
Since Qi(x) = 0 for each class x in the mod(2) Chow ring, the second statements follows from

Q1(w2i+1) = w2i+1+3 6∈ J mod(W 2) when 2i < 2`− 1.

For 2i = 2`, we have Qi(w2i+1) = w2i+1−1w2i+1 6∈ J mod(W 3). q.e.d.

In our (real) case, it is known [Qu] that each maximal elementary abelian 2-group A has
rank2A = h+ 1 and e|A = Πx∈H1(BĀ;Z/2)(z + x). Here we identify A ∼= C ⊕ Ā and

H∗(BC;Z/2) ∼= Z/2[z], H∗(BĀ;Z/2) ∼= Z/2[x1, ..., xh].

The Dickson algebra is written as a polynomial algebra

Z/2[x1, ...., xh]GLh(Z/2) ∼= Z/2[d0, ...., dh−1].

where di is defined as e|A = z2h

+ dh−1z
2h−1

+ ... + d0z. We can also identify di = w2h−2i(∆) ∈
H∗(BG;Z/2) [Qu].
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Lemma 7.3. (Corollary 2.1 in [Sc-Ya]) We have

Qh−1e = d0e and Qke = 0 for 0 ≤ k ≤ h− 2.

Thus we know that e = η`−1 is not in the image from CH∗(BG). Let us consider i∗/2 :
CH∗(BG)→ CH∗(BT )/2 (but not to CH∗(BT )W /2).

Conjecture 7.4. Let G = Spin(2`+ 1) be of real type. Then we have

Im(i∗/2(CH∗(BGk)) ∼= D`/2 = Z/2[c4, c6, ..., c2`, c2h ] ⊂ H∗(BT )/2.

We will see that the above conjecture is true when G = Spin(7), Spin(9), and some weaker
version for Spin(∞).

We consider the motivic cohomology so that

CH∗(X)/2 ∼= H2∗,∗(X;Z/2).

The degree is given deg(wi) = (i, i) and deg(ci) = (2i, i). The cohomology operation Qi exists in
the motivic cohomology with deg(Qi) = (2i+1 − 1, 2i − 1). Hence

QiQ0(w2) ∈ H2∗,∗(BGk;Z/2) ∼= CH∗(BGk)/2.

Using these facts, we can see

Theorem 7.5. ([Ya1]) The ring CH∗(BSpin(n)k)/2 has a subring

RQ(n) = Z/2[c2, ..., cn]/(Q1Q0w2, ..., Qn−1Q0wn)⊗ Z/2[c2h(∆C)]

where ci is the Chern class for Spin(n) → SO(n) → U(n) and c2h(∆C) is that of complex repre-
sentation for ∆.

Proof. This theorem is proved in [Ya1] for k = k̄. It is well known K∗(BGk) ∼= K∗(BGk̄). Hence
we see all Chern classes in CH∗(BGk̄) can be extended for CH∗(BGk). (see Corollary 4.3.) q.e.d.

Lemma 7.4. Let m = 2`+ 1 and G be real type. Then we have the isomorphism

i∗(RQ(m)) ∼= D`/2 = Z/2[c4, c6, ..., c2`, c2h(∆C)].

Proof. The element Q0Qjw2 exists as a zero element in CH∗(BG(m))/2. The element

c2i+1 = w2
2i+1 = Q0(w2i)w2i+1 = Q0(w2iw2i+1)

also exists in CH∗(BG(m)) and 2-torsion. q.e.d.
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8 G/Bk for G = Spin(n)

In this section, let G′′ = SO(2`+ 1) and G = Spin(2`+ 1). It is well known that G′′/T ′′ ∼= G/T for
the maximal tori T ′′, T for the orthogonal and spin groups. By definition, we have the 2 covering
π : G → G′′. We see that π∗ : H∗(G/T ) ∼= H∗(G′′/T ′′). Let 2t ≤ ` < 2t+1, i.e. t = [log2`]. The
mod 2 cohomology is

H∗(G;Z/2) ∼= P (y)⊗ Λ(x3, x5, ..., x2`−1)⊗ Λ(z), |z| = 2t+2 − 1

where P (y) ∼= P (y)′′/(y2) where P (y)′′ is the P (y) in grH∗(G′′;Z/2) given in §7. That is,

grP (y) ∼= ⊗2i6=2jΛ(y2i) ∼= Λ(y6, y10, y12, ..., y2¯̀)

where ¯̀= `− 1 if ` = 2j for some j, and ¯̀= ` otherwise.
The Qi operation for z is given by Nishimoto [Ni]

Q0(z) =
∑

i+j=2t+1,i<j

y2iy2j , Qn(z) =
∑

i+j=2t+1+2n+1−2,i<j

y2iy2j for n ≥ 1.

We know that
grH∗(G/T )/2 ∼= P (y)⊗ S(t)/(2, c2, ....., c`, c

2t+1

1 ).

Here ci = π∗(ci) and d2t+2(z) = c2
t+1

1 in the spectral sequence converging H∗(G/T ).
The Chow ring CH∗(R(G))/2 is not computed yet (for general `), while we have the following

lemmas.

Lemma 8.1. Let G = Spin(2`+ 1), G is versal, and 2t ≤ ` < 2t+1. Then there is a surjection

Λ(c2, ..., c¯̀)⊗ Z/2[e2t+1 ]→ CH∗(R(G))/2.

where ci = π∗(ci) and ej = cj1 in S(t) ∼= H∗(BT ) for π : G→ G′′ = SO(2`+ 1).

Lemma 8.2. We have

i∗(c2i) = (ci)
2, i∗(c2i+1) = 0, i∗(c2h(∆C)) = e2h−t−1

2t+1 .

Proof. The first equation is well known (see Lemma 7.3 in [Ya4]), in fact c2i = 0 in CH∗(G′′/Bk)
is proved using CH∗(BG′′k) for G′′ = SO(n). The second equation follows from P 1c2i = c2i+1 and
P 1((ci)

2) = 0. The last equation follows from the fact ∆ is spin representation(which is nonzero in

the restriction on Z/2 (recall e2t+1 = c2
t+1

1 ). q.e.d.

Lemma 8.3. Let G(n) = Spin(n) and G(n) be versal. Then given n ≥ 1, there is N ≥ 7 such that

CH∗(R(G(N))/2 ∼= Λ(c2, ..., cn) for all ∗ ≤ n.

Proof. Let N = 2`+ 1, and 22 ≤ 2n < 2t ≤ ` < 2t+1.
We will see

CH∗(R(G(N))/2 ∼= Λ(c2, ..., c`) for ∗ < 2n.



BG and G/B 19

Suppose that

x =
∑

ci1 ...cis = 0 ∈ CH∗(R(G))/2 for 2 ≤ i1 < ... < is < 2n.

Recall k(n)∗ = Z/p[vn] and k(n)∗(R̄(G)) ∼= k(n)∗ ⊗ P (y). We note that in k(n)∗(R̄(G)

cij = vny2m with m = 2n − 1 + ij .

Since 2n < m < 2n+1, the number m is not a form 2r, r > 3. Hence y2m is a generator of grP (y).
Moreover recall that

e2t+1 = vny2t+1−2+2n−2y2t+2 + ...

This element is in the ideal(v2
n, E) with E = (y2j |j > 2t). Hence we see ci,j = vny2m is also nonzero

mod(v2
n, E) since n < t.

Thus we see that x′ = y2n−2+2i1 ....y2n−2+2is , which is an additive generator of P (y). Hence it
is also k(n)∗-module generators of k(n)∗(R̄(G)). We consider the element (in k(n)∗(R̄(G)))

x′′ = res(
∑

ci1 ...cis) =
∑

vsnx
′ 6= 0 ∈ k(n)∗ ⊗ P (y).

Moreover vs−1
n x′ 6∈ Im(res), because Im(res) is generated by res(cj1)...res(cjr ) and each res(cj) =

0 mod(vn). Hence

x′′ 6= 0 in k(n)∗(R(G))⊗k(n)∗ Z/2 ∼= CH∗(R(G))/2.

This is a contradiction. q.e.d.

Corollary 8.1. Let G(N) = Spin(N) and G(N) be versal. Then we have

lim∞←NCH
∗(R(G(N))/2 ∼= Λ(c2, c3, ..., cn, ...),

lim∞←NCH
∗(F)/2 ∼= S(t)/(2, c22, c

2
3, ..., c

2
n, ...),

Proof. The second isomorphism follows from the additive isomorphism

CH∗(F)/2 ∼= CH∗(RG(N))/2⊗ S(t)/(c2, c3, ...).

q.e.d.

Corollary 8.2. We have lim∞←ND(G(N)) = 0.

Proof. From Lemma 7.9, we have

lim∞←NIdeal(i
∗/2(CH∗(BG(N)k)) ⊃ (D∞/2)

= Ideal(i∗c4, i
∗c6, ..., i

∗c2i, ...) ⊂ CH∗(BBk)/2.

We get the result from i∗ : c2i 7→ c2i and from the preceding corollary. In fact, Ker(j∗) ∼=
Ideal(2, c22, c

2
3, ...). q.e.d.
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9 Spin(7) for p = 2

In this section, we assume G = Spin(7) and p = 2. Then

H∗(BG;Z/2) ∼= Z/2[w4, w6, w7, w8]

where wi for i ≤ 7 (resp. i = 8) are the Stiefel-Whitney classes for the representation induced from
Spin(7)→ SO(7) (resp. the spin representation ∆).

Thus the integral cohomogy is written as (using Q0w6 = w7)

H∗(BG) ∼= Z(2)[w4, c6, w8]⊗ (Z(2){1} ⊕ Z/2[w7]{w7})

∼= D ⊗ ΛZ(w4, w8)⊗ (Z(2){1} ⊕ Z/2[w7]{w7})

where D = Z(2)[c4, c6, c8] with ci = w2
i .

Next we consider the Atiyah-Hirzebruch spectral sequence

E∗,∗
′

2
∼= H∗(BG)⊗BP ∗ =⇒ BP ∗(BG).

We can compute the spectral sequence

grBP ∗(BG) ∼= D ⊗ (BP ∗{1, 2w4, 2w8, 2w4w8, v1w8}

⊕BP ∗/(2, v1, v2)[c7]{c7}/(v3c7c8)).

Then BP ∗(BG)⊗BP∗ Z(2) is isomorphic to ([Ko-Ya])

D{1, 2w4, 2w8, 2w4w8, v1w8}/(2v1w8)⊕D/2[c7]{c7}.

On the other hand, the Chow ring of BGC is given by Guillot ([Gu],[Ya2])

Theorem 9.1. Let k = k̄. Then we have isomorphisms

CH∗(BGk) ∼= BP ∗(BGk)⊗BP∗ Z(2)

∼= D ⊗ (Z(2){1, c′2, c′4.c′6} ⊕ Z/2{ξ3} ⊕ Z/2[c7]{c7})

where cl(ci) = w2
i , cl(c

′
2) = 2w4, cl(c′4) = 2w8, cl(c′6) = 2w4w8, and cl(ξ3) = 0, |ξ3| = 6. However

clΩ(ξ3) = v1w8 in BP ∗(BT )W , for the cycle map clΩ of the algebraic cobordism.

Now we consider CH∗(G/Bk). Let G = Spin(7) and G be versal. The group G is of type (I)
and we can take b1 = c2, b2 = c3, b3 = e4 with |e4| = 8.

The Chow ring CH∗(G/Bk) is given in Theorem 2.4 (in fact, G is of type (I))

CH∗(G/Bk) ∼= S(t)/((2c2, c
2
2, c2c3, c

2
3, e4), S(t) = Z(2)[t1, t2, t3].

Hence we have Ker(j(G)) ∼= (2c2, c
2
2, c2c3, c

2
3, e4). Recall

CH∗(BḠk)/(Tor) ∼= CH∗(BBk)W ∼= D{1, c′′2 , c′′4 , c′′6}
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where c′′i is a Chern class of the (complex) spin representation. Note CH∗(BḠk)/Tor ∼= CH∗(BGk)/Tor
from Lemma 4.3. Since i(c′′2) = 2w4, ..., we see

D/2 ∼= Im(i∗/2 : CH∗(BGk)→ CH∗(BT )/2).

We can see that the map i∗ is given c4 7→ c22, c6 7→ c23, c′′8 7→ e2
4, and

c′′2 7→ 2c2, c′′4 7→ 2e4, c′′6 7→ 2c2e4.

In particular i∗CH∗(BGk) = i∗CH∗(BḠk). Thus we see

Proposition 9.2. Let G = Spin(7) and G be versal. Then we have additively

D(G) ∼= Λ(c2c3, e4)+ ⊗ S(t, c) for S(t, c) ∼= S(t)/(c2, c3, e4).

Proof. The result follows from Ker(j∗)/Ideal(i+) ∼= (c22, c2c3, c
2
3, e4)/(c22, c

2
3, e

2
4). q.e.d.

10 Spin(9) for p = 2

In this section, we assume G = Spin(9) and p = 2 and hence h = 4. It is well known (in fact
w2, w3, w5 ∈ J)

H∗(BG;Z/2) ∼= Z/2[w4, w6, w7, w8, w16]

where wi for i ≤ 8 (resp. i = 16) are the Stiefel-Whitney class for the representation induced from
Spin(9)→ SO(9) (resp. the spin representation ∆ and hence w16 = w16(∆) = e).

Recall that H∗(BG) has just 2-torsion by Kono. Let us write

D = Z(2)[c4, c6, c8, c16] with ci = w2
i .

Then we can write

H∗(BG)/Tor ∼= D ⊗ ΛZ(w4, w8, w16), T or ∼= D ⊗ Z/2[w7]+.

Next we consider the Atiyah-Hirzebruch spectral sequence

E∗,∗
′

2
∼= H∗(BG)⊗BP ∗ =⇒ BP ∗(BG).

Using Q1(w4) = w7, Q2(w7) = c7, Q2(w8) = w7w8 and Q3(w7w8) = c7c8, we can compute the
spectral sequence (page 796, (6.14) in [Ko-Ya]). Let us write D′ = Z(2)[c4, c6, c8] and D′′ =
Z(2)[c4, c6, c16]. Then the infinite term is given

E∞ = grBP ∗(BG)

∼= D′ ⊗ (BP ∗{1, 2w4, 2w8, 2w4w8, v1w8} ⊕BP ∗/(2, v1, v2)[c7]+/(v3c7c8))

⊕D′′ ⊗ (BP ∗{2w4w16, 2w16, v1w16, v2w16} ⊕BP ∗/(2, v1, v2)[c7]{c7c16})

⊕D ⊗ (BP ∗{2w8, 2w4w8, v1w8}{w16} ⊕BP ∗/(2, v1, v2, v3, v4)[c7]{c7c8c16}).

However BP ∗(BG)⊗BP∗ Z(2) is not so complicated, and it is isomorphic to

BP ∗(BG)⊗BP∗ Z(2)
∼= D{1} ⊕D ⊗ 2ΛZ(w4, w8, w16)+
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⊕D/2{v1w8, v1w16, v1w8w16, v2w16} ⊕D/2[c7]+.

The elements in BP ∗(BG) corresponding to v1w8, ..., v2w16 are all torsion free elements. How-
ever they are 2-torsion in BP ∗(BG)⊗BP∗ Z(2), e.g.,

2v2w16 ∈ v2BP
∗(BG), since 2w16 ∈ BP ∗(BG).

We will prove the following lemma.

Lemma 10.1. Each element in 2ΛZ(w4, w8, w16) is represented by a sum of products of Chern
classes.

Hence c̃l/Tor is surjective. So from Lemma 4.1, we have

Theorem 10.1. We have the isomorphism

CH∗(BḠk)/(Tor) ∼= (BP ∗(BG)⊗BP∗ Z(2))/(Tor)

∼= D{1, c′′2 , c′′4 , c′′6 , c′′8 , c′′10, c
′′
12, c

′′
14}

where ci (resp. c′′j ) is the Chern class of the usual (resp. complex spin) representation.

Let us write by Grif ⊂ CH∗(BḠk) be the ideal of Griffiths elements, that is Grf = Ker(cl :
CH∗(BḠk)→ H∗(BG)).

Corollary 10.2. We have Tor/Grif ∼= D/2[c7]+.

Remark. Note that v1w8 ∈ Grif , but we can not see v1w16, v2w16 are in CH∗(BḠk) or not,
i.e., we do not see c̄l is surjective or not.

To prove the above lemma, we recall the complex representation ring

R(Spin(2`+ 1)) ∼= Z[λ1, ..., λ`−1,∆C]

Here λi is the i-th elementary symmetric function in variables z2
1 + z−2

1 ,...,z2
` + z−2

` in R(T ) ∼=
Z[z1, z

−1
1 , ..., z`, z

−1
` ] for the maximal torus T . The representation ∆C is defined∑

zε11 ...z
ε`
` εi = 1 or − 1.

Consider the restriction R(S1) ∼= Z[z1, z
−1
1 ] (i.e., zi = 1 for i ≥ 2). Since

λ1 = z2
1 + z−2

1 + ...+ z2
4 + z−2

4 , so λ1|S1 = z2
1 + z−2

1 + 6.

Thus for H∗(BS1) ∼= Z[u], |u| = 2, we have

ResBS1(c(λ1)) = (1− 2u)(1 + 2u) = 1− 4u2.

From this we see c2(λ1)|S1 = −4u2 6= 0.
Recall that H4(BG)(2)

∼= Z(2){w4}. Note ResS1(w4) = 0 in H∗(BS1;Z/2), and w4 is not
represented by a Chern class (in fact, it does not exist in BP ∗(BG)). Using these facts, we see

ResBS1(w4) = 2u2 and so ResBS1(2w4) = 4u2

which is represented by Chern classes.
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Proof of Lemma 10.1. We consider the Chern classes ci(∆C)|BS1 . Consider the restriction ∆C|S1 =
23(z1 + z−1

1 ). Hence

ResBS1(c(∆C)) = (1− u2)8 = 1−
(

8

1

)
u2 +

(
8

2

)
u4 + ...+ u16.

Recall q3|BS1 = w4|BS1 = 2u2. Since q2
4 = 2q3, we see w8|BS1 = q4|BS1 = 2u4. We also know

e|BS1 = u8 (in fact e = w16 is defined using ∆). Therefore 2w8|BS1 = 4u4 and 2e|BS1 = 2u8

are represented by Chern classes. Similarly we can see that each element in 2ΛZ(w4, w8, w16) is
represented by Chern class. For example

2w4w8w16|S1 = 2(2u2)(2u4)u8 = 23u14 =

(
8

7

)
u14

which is represented by a Chern class. q.e.d.

Let G = Spin(9) and G be versal. The Chow ring of the flag variety is given in §6 and

Ker(j∗(G)) = (c22, c2c3, c
2
3, e8, c4) ⊂ S(t)/2,

The Chow ring of BG is still unknown. But we see from the preceding theorem CH∗(BGk)/Tor ∼=
D{1, c′′2 , c′′4 , c′′6 , c′′8 , c′′10, c

′′
12, c

′′
14}. Since i∗(c′′2) = 2w4, i

∗(c′′4) = 2w8, ..., we see Conjecture 7.7 for
G = Spin(9).

Theorem 10.3. Let G = Spin(9). Then for D = Z(2)[c4, c6, c8, c
′′
16], we have

D/2 ∼= Im(i∗/2 : CH∗(BGk)→ CH∗(BBk)/2).

We can see the map i∗ is given

c4 7→ c22, c6 7→ c23, c8 7→ e8, c′′16 7→ (c4)4,

c′′2 7→ 2c2, c′′4 7→ 2c4, c′′6 7→ 2c2c4, c′′8 7→ 2c24, c′′10 7→ 2c2c
2
4,

c′′12 7→ 2c4e8, c′′14 7→ 2c2c4e8.

Here c′′i = ci(∆C) for the complex spin representation.
From Theorem 10.2, we have

Proposition 10.4. Let G = Spin(9) and G be versal, Then we have

D(G) = DCH/2(G) ∼= (Z/2{1, c2c3} ⊗ Z/2[c4]/(c44))+ ⊗ S(t, c).

11 The ordinary cohomology for F4

In this and next sections, we assume (G, p) = (F4, 3). For ease of notation, the classifying space BG
means the topological space BG(C) (or the variety BGk̄). . Toda computed the mod(3) cohomology
of BF4. (For details see [Tod1].)
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Theorem 11.1. (Toda [Tod1]) We have additively H∗(BG;Z/3) ∼= C ⊗D,

where C = F{1, x20, x
2
20}+ Z/3[x26]⊗ Λ(x9)⊗ Z/3{1, x20, x21, x26}

and D = Z(3)[x36, x48], F = Z(3)[x4, x8].

Here the suffix means its degree.

Remark. The multiplicative structure is also given completely by Toda [Tod1], e.g., x21x8 +
x20x9 = 0.

Note that H∗(BG) has no higher 3-torsion and Q0x8 = x9, Q0x20 = x21. So x8, x20 6∈ H∗(BG).
From Q0x25 = x26, we can see x26 = Q2Q1(x4). Using these we have

Corollary 11.2. ([Tod1], [Ka-Mi]) We have isomorphisms

H∗(BT ;Z/3)W ∼= Heven(BG;Z/3)/(Q2Q1x4) ∼= D/3⊗ F{1, x20, x
2
20}.

H∗(BT )W ∼= H∗(BG)/Tor ∼= D ⊗ (Z(3){1, x4} ⊕ E)

where D = Z(3)[x36, x48], F = Z(3)[x4, x8], and E = F{ab|a, b ∈ {x4, x8, x20}}.

Note that E ⊕ Z(3){1, x4, x8, x20} ∼= Z(3)[x4, x8, x20]/(x3
20).

To show the above theorem, Toda uses the following fibering

Π→ BSpin(9)→ BF4

where Π = F4/Spin(9) is the Cayley plane. Let T be the maximal torus of Spin(9) ⊂ F4, and
W (G) be the Weyl group of G. Let us write H∗(BT ;Z/3) ∼= Z/3[t1, ..., t4]. It is well known

H∗(BSpin(9);Z/3) ∼= H∗(BT ;Z/3)W (Spin(9)) ∼= Z/3[p1, ..., p4]

where pi is the i-th Pontrjagin class which is the i-th elementary symmetric function on variable
t2j . The Weyl group W (F4) is generated by elements in W (Spin(9)) and by R with R(ui) =
ui − (u1 + ...+ u4). The invariant ring of G = F4 is also computed by Toda

Theorem 11.3. There is a ring isomorphism

H∗(BT ;Z/3)W (G) ∼= Z/3[p1, p̄2, p̄5, p̄9, p̄12]/(r15) ⊂ Z/3[p1, ..., p4]

where p̄2 = p2 − p2
1, p̄5 = p4p1 + p3p̄2, p̄9 = p3

3 mod(I),

p̄12 = p3
4 mod(I), r15 = p̄3

5, with I = Ideal(p1, p̄2).

Let us write i : T ⊂ F4. The above elements correspond even degree generator (except for x26).

Corollary 11.4. We have

i∗(x4) = p1, i∗(x8) = p̄2, i∗(x20) = p̄5, i∗(x36) = p̄9, i∗(x48) = p̄12.

By using this corollary, we can write the reduced power actions.
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Lemma 11.1. ([Tod1]) We have

P 1(x4) = −x8 + x2
1, P 1(x8) = x4x8, P 1(x20) = 0,

P 3(x4) = 0, P 3(x8) = x20 − x4x
2
8, P 3(x20) = x20x4(−x8 + x2

4),

P 3(x36) = x48 mod(x4, x8).

Recall that the mod(3) cohomology of F4 is

H∗(G;Z/3) ∼= Z/3[y8]/(y3
8)⊗ Λ(x3, x7, x11, x15).

Here suffices mean their degree. Recall the cohomology of the flag variety

H∗(G/T ;Z/3) ∼= P (y)⊗ S(t)/(b1, ..., b4)

and so b1 = p1, b2 = p̄2, b3 = p3, b4 = p4. Define DH/3(G) = Ker(j+)/(Im(i+) for

H∗(BG;Z/3)
i∗→ H∗(BT ;Z/3)

j∗→ H∗(G/T ;Z/3).

Proposition 11.5. We have additively

DH/3(G) ∼= Z/3[p3, p4]+/(p3
3, p

3
4)⊗ S(t, p) for S(t, p) ∼= S(t)/(p1, ..., p4).

Proof. First note that i∗(x4) = p1, i∗(x8) = p̄2 and p1, p̄2 are zero in DH/3(G).
Since i∗(x36) = p̄9 = p3

3 mod(I), we see p3
3 = 0 ∈ D̄H/3(G). Similarly, we see p3

4 = 0 ∈ DH/3(G)
from i∗(x48) = p̄12. q.e.d.

12 BP ∗-theory and Chow ring for (F4, 3)

We consider the Atiyah-Hirzebruch spectral sequence [Ko-Ya]

E∗,∗
′

2
∼= H∗(BG)⊗BP ∗ =⇒ BP ∗(BG).

Its differentials have forms of d2pn−1(x) = vn⊗Qn(x). Using Q1(x4) = x9, Q1(x20) = x25, Q1(x21) =
x26 and Q2x9 = x26, we can compute ([Ko-Ya])

E∗,∗
′

∞
∼= D ⊗ (BP ∗ ⊗ (Z(3){1, 3x4} ⊕ E)⊕BP ∗/(3, v1, v2)[x26]+).

Hence we have

Theorem 12.1. ([Ko-Ya], [Ya2]) We have the isomorphism

BP ∗(BG)⊗BP∗ Z(3)
∼= D ⊗ (Z(3){1, 3x4} ⊕ E ⊕ Z/3[x26]+).

Lemma 12.1. ([Ya2]) We see x26 ∈ Im(cl).

Proof. From Lemma 4.3 in [Ya2], (see also [Ka-Ya]) if x ∈ H4(X(C) and px ∈ Im(cl), then there
is x′ ∈ H4,3(X;Z/p) such that cl(x′) = x mod(p). Note

y = Q2Q1(x′) ∈ H26.13(X : Z/3) ∼= CH13(X)/3.

Hence we have the lemma from x26 = cl(y). q.e.d.
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Let Grif ⊂ Tor ⊂ CH∗(X|k̄) be the ideal generated by Griffiths elements i.e., Grif = Ker(tC)
for tC : CH∗(X|k̄)→ H∗(X).

Corollary 12.2. We have Tor/Grif ∼= D ⊗ Z/3[x26]+ and

CH∗(BGk̄)/Tor ⊂ D ⊗ (Z(3){1, 3x4} ⊕ E) ⊂ H∗(BG)/Tor.

If Totaro’s conjecture is correct, then Grif = {0} and the first inclusion is an isomorphism.
From Lemma 3.1-3.4 in [Ya2], we see x36, 3x4, x

3
4, ... are represented by Chern classes. Moreover

we still know

Lemma 12.2. ([Ya2]) Let RP be the subalgebra of the mod(3) Steenrod algebra A3 generated by
reduced powers. Then (BP ∗(BG)⊗BP∗ Z(3))/(Tor, 3) is generated as an RP -module by

x2
4, x2

8, and products of some Chern classes.

Here we consider the (algebraic) K-theory with the coefficient K∗ = Z(p)[v1, v
−1
1 ] such that

BP ∗(BG)⊗BP∗ K∗ ∼= K∗(BG).

Recall that gr∗geo(X) is the graded associated ring defined by the geometric filtration of K0(X) (that
is isomorphic to the infinite term E2∗,∗,0

∞ of the motivic Atiyah-Hirzebruch spectral sequence). Then
it is well known that we have the surjection CH∗(X)→ gr∗geo(X).

Lemma 12.3. We see x2
4 ∈ Im(cl).

Proof. Suppose that x2
4 6∈ CH∗(BGk). However x2

4 exists in K∗(BGk) ∼= K∗(BG), because it exists
in BP ∗(BG). Since CH∗(X)→ gr∗geo(X) is surjective, there is an element

c ∈ CH∗(BGk) such that c = vs1x
2
4 for s ≥ 1.

By dimensional reason, this s = 1 and |c| = 4. But by Totaro

CH2(BG) ∼= (BP ∗(BG)⊗BP∗ Z(p))
4,

which is a contradiction. q.e.d.

We can not see x2
8 ∈ Im(cl) or not [Ya2], still in this paper.

Proposition 12.3. ([Ya1]) Let (G, p) = (F4, 3). Suppose x2
8 ∈ Im(cl). Then the modified cycle

map c̄l : CH∗(BGk)→ BP ∗(BG)⊗BP∗ Z(3) is surjective. Moreover, we have

Im(c̄l) ∼= Im(cl) ∼= D ⊗ (Z(3){1, 3x4} ⊕ E ⊕ Z/3[x26]+).

From Theorem 2.3, we have

CH∗(G/Bk)/3 ∼= S(t)/(pipj |1 ≤ i, j ≤ 4).

Hence, we have (pipj) ⊃ Ideal(i∗CH∗(BGk)) e.g. i∗(x2
4) = p2

1, i∗(x4x8) = p1p2,...
Suppose that x2

8 6∈ CH∗(BGk). However x2
8 exists in K∗(BGk) ∼= K∗(BG), because it exists in

BP ∗(BG). Since CH∗(X)→ gr∗geo(X) is surjective, there is an element

c ∈ CH∗(BGk) such that c = vs1x
2
8 for s ≥ 1.

This c is torsion element in CH∗(BG) since 3x2
8 ∈ Im(cl).



BG and G/B 27

Proposition 12.4. If x2
8 6∈ Im(cl), then there is a non zero element c ∈ Tor with |c| = 16− 4s for

s = 1 or 2.

We consider the following ideals in CH∗(BBk)

Ker(j∗) = (3p1, p
2
1, p1p̄2, 3p3, p̄

2
2, ....) ⊃ (3x4, x

2
4, x4x8, x

3
4, λx

2
8, ..) = Ideal(Im(i∗)),

for λ ∈ Z(3). We note that

i∗(3x4) = 3p1, i∗(x2
4) = p2

1, i∗(x3
4) = 3p3, i∗(x4x8) = p1p2

where we used p3
1 = 3p3 mod(p1p2). Note that λ 6= 0 implies i∗(x2

8) = p2
2.

Proposition 12.5. The map c̃l is surjective if and only if D∗(G) = 0 for ∗ ≤ 16.

Proposition 12.6. The ring D̃(G) is isomorphic to a quotient of

D(F4)′ = Z/3{pii1 p
i2
2 p

i3
3 p

i4
4 |2 ≤ i1 + ...+ i4}/(p2

1, p1p2, p
3
3, p

3
4).

13 E6,E7 for p = 3

The groups E6, E7 for p = 3 are of type (I). Hence

Kerj+(G) ∼= Ideal(bibj , bk|1 ≤ i, j ≤ 4, 5 ≤ k ≤ `) ⊂ S(t)/3.

By Kameko [Ka], there is a representation ρ` : E` → U(N) such that

i∗`c18(ρ`) = x36 for i` : F4 → E`.

Hence i∗` (P
3c18) = x48. Thus

p3
3 = i∗(c18), p3

4 = i∗(P 3c18).

Proposition 13.1. Let G = E` for ` = 6 or 7. Then there is a surjection

((Z/3{1} ⊗D(F4)′)⊗ Z/3[b5, ..., b`])
+ → D̃(G).

Proof. From the proof of Lemma 12.5, we see p2
1 ∈ Im(i∗). Since P 1(p2

1) = p1p̄2, we see p1p2 ∈
Im(i∗) also for E6, E7. q.e.d.

References

[Be-Wo] D. Benson and J. Wood Integral invariants and cohomology of BSpin(n). Topology. 34
(1994), 13-28.

[Fe] M. Feshbach. The image of H∗(BG;Z) in H∗(BT ;Z) for a compact Lie groupwith max-
imal torus T . Topology. 20 (1985), 93-95.

[Ga-Me-Se] S. Garibaldi, A. Merkurjev and J-P Serre. Cohomological invariants in Galois cohomol-
ogy. University Lecture Series 28, Amer. Math. Soc. Providence, RI (2003), viii+168pp.



28 N. Yagita

[Gu] P. Guillot, The Chow rings of G2 and Spin(7), J. reine angew. Math. 604 (2007), 137-158.

[Ha] M.Hazewinkel, Formal groups and applications, Pure and Applied Math. 78, Academic
Press Inc. (1978), xxii+573pp.

[Ka] M. Kameko. Mod (3) Chern classes and generators. Proc. Japan Acad. 93 (2017), 55-60.

[Ka-Mi] M. Kameko and M. Mimura, Wely group invariants, arXiiv: 1202.6459v1 [math.AT],
(2012).

[Ka-Ya] M. Kameko and N. Yagita. Chern subrings. Proc. Amer. Math. Soc. 138 (2010), 367-373.

[Kar] N. Karpenko. Chow groups of some generically twisted flag varieties. Ann. K-theory 2
(2017), 341-356.

[Ko] A. Kono, On the integral cohomology of BSpin(n). J. Math. Kyoto Univ. 26 (1986),
333-337.

[Ko-Ya] A. Kono and N.Yagita, Brown-Peterson and ordinary cohomology theories of classifying
spaces for compact Lie groups. Trans. Amer. Math. Soc. 339 (1993), 781-798.

[Me-Ne-Za] A. Merkurjev, A. Neshitov and K. Zainoulline. Invariants of degree 3 and torsion in
the Chow group of a versal flag. Composito Math. 151 (2015), 11416-1432.

[Mi-Ni] M. Mimura and T. Nishimoto. Hopf algebra structure of Morava K-theory of exceptional
Lie groups. Contem. Math. 293 (2002), 195-231.

[Ni] T. Nishimoto. Higher torsion in Morava K-thoeory of SO(m) and Spin(m). J. Math.
Soc. Japan. 52 (2001), 383-394.

[Pe] V. Petrov. Chow ring of generic maximal orthogonal Grassmannians. Zap. Nauchn, Sem.
S.-Peterburg. Otdel. Mat. Inst. Skelov. (POMI) 443 (2016), 147-150.

[Pe-Se-Za] V.Petrov, N.Semenov and K.Zainoulline. J-Invariant of linear algebraic groups. Ann.
Scient. Ec. Norm. Sup. 41, (2008) 1023-1053.

[Qu] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups,
Math. Ann. 194 (1971), 197-212.

[Ra] D.Ravenel. Complex cobordism and stable homotopy groups of spheres. Pure and Applied
Mathematics, 121. Academic Press (1986).

[Ro] M.Rost. Some new results on Chowgroups of quadrics. preprint (1990).

[Sc-Ya] B. Schuster and N. Yagita, Transfers of Chern classes in BP-cohomology and Chow rings.
Trans. Amer. Math. Soc. 353 (2001), 1039-1054.

[Se-Zh] N. Semenov and M Zhykhovich. Integral motives, relative Krull-Schumidt principle, and
Maranda-type theorems. Math. Ann. 363 (2015) 61-75.

[Tod1] H. Toda, Cohomology mod(3) of the classifying space BF4 of the exceptional group F4.
J. Math. Kyoto Univ. 13 (1973) 97-115.



BG and G/B 29

[Tod2] H.Toda. On the cohomolgy ring of some homogeneous spaces. J. Math. Kyoto Univ. 15
(1975), 185-199.

[Tod-Wa] H.Toda and T.Watanabe. The integral cohomology ring of F4/T and E4/T . J. Math.
Kyoto Univ. 14 (1974), 257-286.

[To1] B. Totaro. The Chow ring of classifying spaces. Proc.of Symposia in Pure Math. ”Alge-
braic K-theory” (1997:University of Washington,Seattle) 67 (1999), 248-281.

[To2] B. Totaro. The torsion index of the spin groups. Duke Math. J. 299 (2005), 249-290.

[To3] B. Totaro, Group cohomology and algebraic cycles, Cambridge tracts in Math. (Cambridge
Univ. Press) 204 (2014).

[Vo1] V. Voevodsky. Motivic cohomology with Z/2 coefficient. Publ. Math. IHES 98 (2003),
59-104.

[Vo2] V.Voevodsky. On motivic cohomology with Z/l-coefficients. Ann. of Math. 174 (2011),
401-438.

[Ya1] N. Yagita, Chow rings of classifying spaces of exraspecial p-groups. Recent progress in
homotopy theory. Contempt. Math. 293 (2002), 397-409..

[Ya2] N. Yagita, The image of the cycle map of classifying space of the exceptional Lie group
F4, J. Math. Kyoto Univ. 44 (2004), 181-191.

[Ya3] N. Yagita. Note on restriction maps of Chow rings to Weyl group invariants. Kodai Math.
J. 40 (2017), 537-552.

[Ya4] N. Yagita. Chow rings of versal complete flag varities. J. Math. Soc. Japan 72 (2020),
1-39.


